Map
Videos
About
Under the hood
Contact
WORLD EMOTION GLOBAL TREND
WEAK
+0.5%
Tomorrow:
ANGRY
+2.9%
09/Nov/2016:
HAPPY
+1.7%
Last Data-set:
07/Nov/2016
05:13 UTC
▲
Jequié, Brazil
strong
+5.6% − San Cristóbal, Venezuela
weak
+18.5% − Eastleigh, United Kingdom
happy
+19.0% − Malabon, Philippines
happy
+23.0% − Nizhnekamsk, Russia
confused
+21.0% − Oberhausen, Germany
weak
+19.1% − Ubon Ratchathani, Thailand
confused
+23.5% − Xichang, China
confused
+20.3% − La Spezia, Italy
confused
+22.0% − Sikar, India
confused
+24.6% − Zonguldak, Turkey
strong
+22.9% − Thai Nguyen, Vietnam
sad
+18.1% − Tegal, Indonesia
confused
+4.6% − Tarragona, Spain
strong
+21.8% − Kofu, Japan
confused
+20.9% − Loudi, China
weak
+17.8% − Gurgaon, India
strong
+14.2% − Grodno, Belarus
sad
+19.8% − Oberhausen, Germany
weak
+19.1% − Tanga, Tanzania
confused
+20.3% − Chungju, Korea, South
sad
+4.6% − Yao, Japan
strong
+22.0% − Vallejo, United States
confused
+21.9% − Amiens, France
confused
+22.5% − Waverley, United Kingdom
weak
+24.4% − Gaya, India
strong
+23.6% − Giza, Egypt
confused
+23.8% − Várzea Grande, Brazil
strong
+21.5% − Kure, Japan
happy
+17.9% − Abeokuta, Nigeria
happy
+19.5% − Xichang, China
confused
+20.3% − Kharagpur, India
strong
+17.6% − Yokkaichi, Japan
strong
+19.6% − Diyarbakir, Turkey
strong
+22.7% − Mbeya, Tanzania
confused
+22.8% − Smolensk, Russia
happy
+17.6% − The Wrekin, United Kingdom
happy
+23.6% − Cardiff, United Kingdom
strong
+16.1% − Huntington Beach, United States
strong
+23.2% − Ichikawa, Japan
strong
+4.5% − Caruaru, Brazil
strong
+18.6% − Springfield, United States
confused
+5.1% − Jamalpur, Bangladesh
confused
+17.7% − Lisburn, United Kingdom
strong
+19.9% − Daxian, China
sad
+23.8% − Shaoyang, China
weak
+21.8% − Chungju, Korea, South
sad
+4.6% − Vallejo, United States
confused
+21.9% − Zonguldak, Turkey
strong
+22.9% − BASSE-TERRE, Guadeloupe
strong
+24.8% − Lapu-Lapu, Philippines
strong
+24.6% − Phoenix, United States
strong
+11.7% − Mönchengladbach, Germany
happy
+14.7% − Boksburg, South Africa
confused
+18.1% − Pegu, Myanmar
confused
+24.1% − Dunfermline, United Kingdom
confused
+6.9% − East Hampshire, United Kingdom
confused
+19.0% − BISHKEK, Kyrgyzstan
weak
+8.9% − Cangzhou, China
confused
+17.7% − Piracicaba, Brazil
strong
+20.7% − North York, Canada
strong
+20.2% − Lubumbashi, Congo, Democratic Republic of the
sad
+19.0% − Ubon Ratchathani, Thailand
confused
+23.5% − TIRANA, Albania
sad
+18.7% − Tameside, United Kingdom
confused
+19.1% − Engels, Russia
strong
+21.7% − Jhang, Pakistan
strong
+23.9% − Ndola, Zambia
happy
+17.9% − Unnao, India
weak
+18.8% − Monywa, Myanmar
confused
+22.1% − ST. GEORGES, Grenada
strong
+19.2% − Beaumont, United States
confused
+12.1% − Engels, Russia
strong
+21.7% − Raniganj, India
confused
+23.2% − Waitakere, New Zealand
confused
+23.5% − Yavatmal, India
guilty
+24.6% − Burgos, Spain
strong
+19.8% − Sedgemoor, United Kingdom
strong
+19.3% − Medellín, Colombia
strong
+21.8% − San Sebastián, Spain
confused
+24.0% − Silay, Philippines
happy
+19.9% − Erlangen, Germany
confused
+22.9% − Remscheid, Germany
strong
+19.6% − Pocos de Caldas, Brazil
strong
+24.0% − Remscheid, Germany
strong
+19.6% − Abeokuta, Nigeria
happy
+19.5% − Tacoma, United States
confused
+20.3% − Baranovichi, Belarus
strong
+18.5% − Paraná, Argentina
strong
+12.3% − Hamilton, Canada
confused
+21.0% − Erbil, Iraq
strong
+20.1% − PANAMA, Panama
strong
+3.1% − Pinar del Río, Cuba
confused
+18.6% − BRIDGETOWN, Barbados
confused
+23.8% − Chillán, Chile
strong
+21.7% − Jhang, Pakistan
strong
+23.9% − Tangshan, China
weak
+22.3% − Rangpur, Bangladesh
happy
+24.3% − Pohang, Korea, South
confused
+21.8% − Ulsan, Korea, South
confused
+24.5% − Guilin, China
strong
+3.0% −
▼
Halifax, Canada
strong
-19.1% − Cochabamba, Bolivia
strong
-23.2% − Manchester, United Kingdom
strong
-9.2% − NOUMEA, New Caledonia
strong
-18.8% − Kotte, Sri Lanka
confused
-1.5% − Mojokerto, Indonesia
strong
-13.8% − MONROVIA, Liberia
happy
-23.4% − Richmond, United States
confused
-21.8% − Valencia, Venezuela
confused
-8.0% − Birmingham, United States
confused
-22.6% − Zaria, Nigeria
confused
-18.6% − Braila, Romania
strong
-17.5% − Sapucaia, Brazil
strong
-18.8% − LISBON, Portugal
strong
-7.5% − Bareilly, India
confused
-23.5% − Rouen, France
strong
-6.3% − Yingcheng, China
happy
-22.9% − Palakkad, India
strong
-17.6% − San Pablo, Philippines
strong
-18.3% − Floridablanca, Colombia
strong
-22.9% − Irving, United States
strong
-20.4% − Richmond, United States
confused
-21.8% − Adana, Turkey
confused
-23.4% − Leipzig, Germany
strong
-21.8% − Kochi, India
strong
-24.8% − South Cambridgeshire, United Kingdom
strong
-17.7% − Anand, India
strong
-3.1% − Geelong, Australia
confused
-2.1% − Magdeburg, Germany
strong
-23.7% − Quezon City, Philippines
strong
-4.0% − Tanjung Balai, Indonesia
weak
-4.9% − Muntinlupa, Philippines
strong
-19.8% − Brescia, Italy
strong
-18.6% − Gent, Belgium
strong
-4.2% − Alexandria, United States
strong
-11.9% − Sukabumi, Indonesia
happy
-9.2% − Chicago, United States
strong
-18.5% − Hampton, United States
strong
-12.1% − Serra, Brazil
strong
-5.4% − Bridgeport, United States
strong
-18.9% − Jersey City, United States
strong
-23.2% − Jinan, China
strong
-8.9% − Darlington, United Kingdom
strong
-24.3% − Teignbridge, United Kingdom
confused
-20.2% − Peshawar, Pakistan
strong
-24.4% − Queimados, Brazil
strong
-20.4% − Jiamusi, China
strong
-18.6% − Iseyin, Nigeria
happy
-22.8% − Chiba, Japan
strong
-24.8% − Ingolstadt, Germany
strong
-14.9% − Curitiba, Brazil
strong
-24.8% − Tampa, United States
confused
-19.1% − Petrópolis, Brazil
strong
-18.6% − Santiago de los Caballeros, Dominican Republic
confused
-18.9% − Sefton, United Kingdom
strong
-5.2% − Gujrat, Pakistan
strong
-22.0% − Aguascalientes, Mexico
strong
-17.6% − Dourados, Brazil
strong
-1.2% − Fukuyama, Japan
strong
-22.7% − Luohe, China
happy
-22.9% − Durango, Mexico
strong
-25.0% − Batangas, Philippines
strong
-22.8% − Kitchener, Canada
strong
-15.2% − Amagasaki, Japan
happy
-24.2% − San Jose, United States
confused
-24.0% − Kawachinagano, Japan
happy
-22.9% − Chimbote, Peru
strong
-22.8% − Crewe & Nantwich, United Kingdom
strong
-17.6% − Toluca, Mexico
confused
-22.6% − Nhatrang, Vietnam
happy
-22.9% − Kisumu, Kenya
confused
-19.7% − Sergiev Posad, Russia
happy
-17.8% −
=
Nandyal, India
happy
− Jinin, China
happy
− Xuchang, China
happy
− Niiza, Japan
happy
− Chinhae, Korea, South
happy
− Shaown, China
happy
− Alagoinhas, Brazil
strong
− Bihar Sharif, India
happy
− Lipetsk, Russia
strong
− Pórto Velho, Brazil
happy
− Mudangiang, China
happy
− Artux, China
happy
− Moji-Guaçu, Brazil
happy
− Salamanca, Mexico
strong
− Reggio di Calabria, Italy
happy
− Pinxiang, China
happy
− Nasariya, Iraq
happy
− Holon, Israel
confused
− Sialkote, Pakistan
happy
− Al-Rakka, Syrian Arab Republic
happy
− Juazeiro do Norte, Brazil
happy
− Angren, Uzbekistan
confused
− Colimas, Mexico
happy
− Kiselevsk, Russia
happy
− Sidi-bel-Abbès, Algeria
happy
− Dayuan, China
happy
− Kanhangad, India
happy
− Novocherkassk, Russia
happy
− Khouribga, Morocco
sad
− Calithèa, Greece
happy
− Kurume, Japan
guilty
− Taiyan, China
happy
− Sao Joao de Meriti, Brazil
happy
− Guangshui, China
happy
− Deir El-Zor, Syrian Arab Republic
happy
− Kadhimain, Iraq
happy
− Shanwei, China
confused
− Durg, India
weak
− Rubtsovsk, Russia
happy
− Soyapango, El Salvador
happy
− Evpatoriya, Ukraine
happy
− Sao José do Rio Prêto, Brazil
happy
− Jastrzebie - Zdrój, Poland
confused
− Syktivkar, Russia
happy
− Yuncheng, China
weak
− Korla, China
strong
− Basingstoke & Deane, United Kingdom
happy
− Changweon, Korea, South
happy
− Huaiyin, China
happy
− Taldikorgan, Kazakstan
happy
− Kashihara, Japan
happy
− Meizhou, China
strong
− Ferraz de Vasconcelos, Brazil
happy
− San Fernando de Apure, Venezuela
strong
− Debrezit, Ethiopia
happy
− Xiaocan, China
happy
− Dlepmealow, South Africa
happy
− Taian, China
confused
− Guikong, China
happy
− Chongli, China
weak
− Shuangyashan, China
happy
− Sirjan, Iran
happy
−
Reset - Show All Layers
Select a group to display an individual emotion layer:
happy
excited
overjoyed
thrilled
exuberant
ecstatic
weak
helpless
hopeless
beat
overwhelmed
impotent
confused
bewildered
trapped
troubled
desperate
lost
afraid
terrified
horrified
scared stiff
petrified
fearful
guilty
sorrowful
remorseful
ashamed
unworthy
worthless
sad
depressed
disappointed
alone
hurt
left out
strong
powerful
aggressive
gung ho
potent
super
angry
furious
enraged
outraged
aggravated
irate