Map
Videos
About
Under the hood
Contact
WORLD EMOTION GLOBAL TREND
WEAK
+0.5%
Tomorrow:
ANGRY
+2.9%
09/Nov/2016:
HAPPY
+1.7%
Last Data-set:
07/Nov/2016
05:13 UTC
▲
The Wrekin, United Kingdom
happy
+23.6% − Abeokuta, Nigeria
happy
+19.5% − Pocos de Caldas, Brazil
strong
+24.0% − Ubon Ratchathani, Thailand
confused
+23.5% − Smolensk, Russia
happy
+17.6% − Jhang, Pakistan
strong
+23.9% − Guilin, China
strong
+3.0% − Unnao, India
weak
+18.8% − Silay, Philippines
happy
+19.9% − Baranovichi, Belarus
strong
+18.5% − Oberhausen, Germany
weak
+19.1% − Xichang, China
confused
+20.3% − Tacoma, United States
confused
+20.3% − Caruaru, Brazil
strong
+18.6% − Guarapuava, Brazil
strong
+18.9% − Sedgemoor, United Kingdom
strong
+19.3% − Zonguldak, Turkey
strong
+22.9% − Anjo, Japan
strong
+2.2% − East Hampshire, United Kingdom
confused
+19.0% − Lisburn, United Kingdom
strong
+19.9% − Hachinohe, Japan
strong
+21.2% − Erlangen, Germany
confused
+22.9% − Lapu-Lapu, Philippines
strong
+24.6% − Tangshan, China
weak
+22.3% − Botou, China
strong
+24.2% − Anyang, China
confused
+1.0% − Kure, Japan
happy
+17.9% − Ulan-Ude, Russia
confused
+2.6% − Yavatmal, India
guilty
+24.6% − Pinar del Río, Cuba
confused
+18.6% − Ichikawa, Japan
strong
+4.5% − Eastleigh, United Kingdom
happy
+19.0% − Xichang, China
confused
+20.3% − Abeokuta, Nigeria
happy
+19.5% − Sikar, India
confused
+24.6% − Huntington Beach, United States
strong
+23.2% − Rangpur, Bangladesh
happy
+24.3% − Monywa, Myanmar
confused
+22.1% − Loudi, China
weak
+17.8% − Tarragona, Spain
strong
+21.8% − The Wrekin, United Kingdom
happy
+23.6% − Gurgaon, India
strong
+14.2% − Daxian, China
sad
+23.8% − Tegal, Indonesia
confused
+4.6% − North York, Canada
strong
+20.2% − Oberhausen, Germany
weak
+19.1% − Jhang, Pakistan
strong
+23.9% − Ulsan, Korea, South
confused
+24.5% − San Sebastián, Spain
confused
+24.0% − LA HABANA, Cuba
strong
+18.2% − Gaya, India
strong
+23.6% − Cardiff, United Kingdom
strong
+16.1% − La Spezia, Italy
confused
+22.0% − Boksburg, South Africa
confused
+18.1% − Burgos, Spain
strong
+19.8% − Regensburg, Germany
strong
+16.0% − Vadakara, India
sad
+6.6% − Paraná, Argentina
strong
+12.3% − Zonguldak, Turkey
strong
+22.9% − Phoenix, United States
strong
+11.7% − Vallejo, United States
confused
+21.9% − Beaumont, United States
confused
+12.1% − Fresno, United States
strong
+21.7% − Chungju, Korea, South
sad
+4.6% − Jamalpur, Bangladesh
confused
+17.7% − Medellín, Colombia
strong
+21.8% − Kharagpur, India
strong
+17.6% − Waitakere, New Zealand
confused
+23.5% − ROAD TOWN, British Virgin Islands
confused
+22.0% − Ndola, Zambia
happy
+17.9% − Hamilton, Canada
confused
+21.0% − BRIDGETOWN, Barbados
confused
+23.8% − Giza, Egypt
confused
+23.8% − San Cristóbal, Venezuela
weak
+18.5% − Remscheid, Germany
strong
+19.6% − Remscheid, Germany
strong
+19.6% − Arad, Romania
strong
+11.8% − TIRANA, Albania
sad
+18.7% − Waverley, United Kingdom
weak
+24.4% − Pinar del Río, Cuba
confused
+18.6% − Yao, Japan
strong
+22.0% − Susano, Brazil
strong
+1.7% − Cangzhou, China
confused
+17.7% − Mbeya, Tanzania
confused
+22.8% − Vallejo, United States
confused
+21.9% − PANAMA, Panama
strong
+3.1% − Raniganj, India
confused
+23.2% − Grodno, Belarus
sad
+19.8% − Jequié, Brazil
strong
+5.6% − Pegu, Myanmar
confused
+24.1% − Gurgaon, India
strong
+14.2% − Tameside, United Kingdom
confused
+19.1% − Pohang, Korea, South
confused
+21.8% − Fukuoka, Japan
weak
+13.4% − Dunfermline, United Kingdom
confused
+6.9% − Surakarta, Indonesia
strong
+20.9% − Amiens, France
confused
+22.5% − Botou, China
strong
+24.2% − Chungju, Korea, South
sad
+4.6% − Piracicaba, Brazil
strong
+20.7% − Shaoyang, China
weak
+21.8% −
▼
Adana, Turkey
confused
-23.4% − Batangas, Philippines
strong
-22.8% − Serra, Brazil
strong
-5.4% − Aguascalientes, Mexico
strong
-17.6% − Chicago, United States
strong
-18.5% − Bareilly, India
confused
-23.5% − Sergiev Posad, Russia
happy
-17.8% − Luohe, China
happy
-22.9% − Curitiba, Brazil
strong
-24.8% − Queimados, Brazil
strong
-20.4% − Braila, Romania
strong
-17.5% − Tampa, United States
confused
-19.1% − Darlington, United Kingdom
strong
-24.3% − Chiba, Japan
strong
-24.8% − Kitchener, Canada
strong
-15.2% − Chimbote, Peru
strong
-22.8% − Kotte, Sri Lanka
confused
-1.5% − Durango, Mexico
strong
-25.0% − Gent, Belgium
strong
-4.2% − LISBON, Portugal
strong
-7.5% − Geelong, Australia
confused
-2.1% − Petrópolis, Brazil
strong
-18.6% − Fukuyama, Japan
strong
-22.7% − Palakkad, India
strong
-17.6% − Valencia, Venezuela
confused
-8.0% − Hampton, United States
strong
-12.1% − Kochi, India
strong
-24.8% − San Jose, United States
confused
-24.0% − Bridgeport, United States
strong
-18.9% − Halifax, Canada
strong
-19.1% − Manchester, United Kingdom
strong
-9.2% − Jiamusi, China
strong
-18.6% − Jinan, China
strong
-8.9% − Ingolstadt, Germany
strong
-14.9% − Toluca, Mexico
confused
-22.6% − Kisumu, Kenya
confused
-19.7% − Richmond, United States
confused
-21.8% − Crewe & Nantwich, United Kingdom
strong
-17.6% − Dourados, Brazil
strong
-1.2% − Cochabamba, Bolivia
strong
-23.2% − Sukabumi, Indonesia
happy
-9.2% − Teignbridge, United Kingdom
confused
-20.2% − Alexandria, United States
strong
-11.9% − Irving, United States
strong
-20.4% − Brescia, Italy
strong
-18.6% − Birmingham, United States
confused
-22.6% − Sefton, United Kingdom
strong
-5.2% − Peshawar, Pakistan
strong
-24.4% − Gujrat, Pakistan
strong
-22.0% − Nhatrang, Vietnam
happy
-22.9% − Amagasaki, Japan
happy
-24.2% − Santiago de los Caballeros, Dominican Republic
confused
-18.9% − Yingcheng, China
happy
-22.9% − NOUMEA, New Caledonia
strong
-18.8% − Anand, India
strong
-3.1% − Kawachinagano, Japan
happy
-22.9% − Muntinlupa, Philippines
strong
-19.8% − Iseyin, Nigeria
happy
-22.8% − Sapucaia, Brazil
strong
-18.8% − South Cambridgeshire, United Kingdom
strong
-17.7% − Quezon City, Philippines
strong
-4.0% − MONROVIA, Liberia
happy
-23.4% − Jersey City, United States
strong
-23.2% − Magdeburg, Germany
strong
-23.7% − Rouen, France
strong
-6.3% − Richmond, United States
confused
-21.8% − San Pablo, Philippines
strong
-18.3% − Zaria, Nigeria
confused
-18.6% − Leipzig, Germany
strong
-21.8% − Mojokerto, Indonesia
strong
-13.8% − Floridablanca, Colombia
strong
-22.9% − Tanjung Balai, Indonesia
weak
-4.9% −
=
Durg, India
weak
− Kashihara, Japan
happy
− Alagoinhas, Brazil
strong
− Juazeiro do Norte, Brazil
happy
− Sao Joao de Meriti, Brazil
happy
− Jinin, China
happy
− Chongli, China
weak
− Al-Rakka, Syrian Arab Republic
happy
− Guangshui, China
happy
− Basingstoke & Deane, United Kingdom
happy
− Kiselevsk, Russia
happy
− Shaown, China
happy
− Sao José do Rio Prêto, Brazil
happy
− Meizhou, China
strong
− Kurume, Japan
guilty
− Novocherkassk, Russia
happy
− Debrezit, Ethiopia
happy
− Holon, Israel
confused
− Salamanca, Mexico
strong
− Taian, China
confused
− Rubtsovsk, Russia
happy
− Lipetsk, Russia
strong
− Sidi-bel-Abbès, Algeria
happy
− Pinxiang, China
happy
− Huaiyin, China
happy
− Bihar Sharif, India
happy
− Moji-Guaçu, Brazil
happy
− Mudangiang, China
happy
− Nandyal, India
happy
− Evpatoriya, Ukraine
happy
− Guikong, China
happy
− Yuncheng, China
weak
− Artux, China
happy
− Khouribga, Morocco
sad
− Xiaocan, China
happy
− Ferraz de Vasconcelos, Brazil
happy
− Chinhae, Korea, South
happy
− Calithèa, Greece
happy
− Sirjan, Iran
happy
− Angren, Uzbekistan
confused
− Syktivkar, Russia
happy
− Shuangyashan, China
happy
− Soyapango, El Salvador
happy
− Kadhimain, Iraq
happy
− Korla, China
strong
− Nasariya, Iraq
happy
− Reggio di Calabria, Italy
happy
− Sialkote, Pakistan
happy
− Changweon, Korea, South
happy
− Dlepmealow, South Africa
happy
− Kanhangad, India
happy
− Deir El-Zor, Syrian Arab Republic
happy
− Xuchang, China
happy
− Niiza, Japan
happy
− Pórto Velho, Brazil
happy
− Shanwei, China
confused
− Dayuan, China
happy
− Colimas, Mexico
happy
− Taldikorgan, Kazakstan
happy
− Taiyan, China
happy
− San Fernando de Apure, Venezuela
strong
− Jastrzebie - Zdrój, Poland
confused
−
Reset - Show All Layers
Select a group to display an individual emotion layer:
happy
excited
overjoyed
thrilled
exuberant
ecstatic
weak
helpless
hopeless
beat
overwhelmed
impotent
confused
bewildered
trapped
troubled
desperate
lost
afraid
terrified
horrified
scared stiff
petrified
fearful
guilty
sorrowful
remorseful
ashamed
unworthy
worthless
sad
depressed
disappointed
alone
hurt
left out
strong
powerful
aggressive
gung ho
potent
super
angry
furious
enraged
outraged
aggravated
irate