Map
Videos
About
Under the hood
Contact
WORLD EMOTION GLOBAL TREND
WEAK
+0.5%
Tomorrow:
ANGRY
+2.9%
09/Nov/2016:
HAPPY
+1.7%
Last Data-set:
07/Nov/2016
05:13 UTC
▲
Susano, Brazil
strong
+1.7% − Bobo Dioulasso, Burkina Faso
angry
+20.4% − Oberhausen, Germany
weak
+19.1% − Hamilton, Canada
confused
+21.0% − Piracicaba, Brazil
strong
+20.7% − Engels, Russia
strong
+21.7% − Pohang, Korea, South
confused
+21.8% − Botou, China
strong
+24.2% − Waitakere, New Zealand
confused
+23.5% − Yavatmal, India
guilty
+24.6% − Chon Buri, Thailand
strong
+23.4% − Kharagpur, India
strong
+17.6% − Raniganj, India
confused
+23.2% − Rangpur, Bangladesh
happy
+24.3% − Surakarta, Indonesia
strong
+20.9% − Tangshan, China
weak
+22.3% − Tarragona, Spain
strong
+21.8% − Silay, Philippines
happy
+19.9% − Pegu, Myanmar
confused
+24.1% − Mulhouse, France
happy
+21.4% − Chungju, Korea, South
sad
+4.6% − Xichang, China
confused
+20.3% − Pinar del Río, Cuba
confused
+18.6% − Engels, Russia
strong
+21.7% − Loudi, China
weak
+17.8% − Caruaru, Brazil
strong
+18.6% − Remscheid, Germany
strong
+19.6% − Beaumont, United States
confused
+12.1% − Boksburg, South Africa
confused
+18.1% − BRIDGETOWN, Barbados
confused
+23.8% − BISHKEK, Kyrgyzstan
weak
+8.9% − Guilin, China
strong
+3.0% − Mbeya, Tanzania
confused
+22.8% − San Cristóbal, Venezuela
weak
+18.5% − Vallejo, United States
confused
+21.9% − Anjo, Japan
strong
+2.2% − Vallejo, United States
confused
+21.9% − Nizhnekamsk, Russia
confused
+21.0% − Tacoma, United States
confused
+20.3% − Ichikawa, Japan
strong
+4.5% − Cangzhou, China
confused
+17.7% − Shaoyang, China
weak
+21.8% − Ndola, Zambia
happy
+17.9% − Lapu-Lapu, Philippines
strong
+24.6% − Tegal, Indonesia
confused
+4.6% − Huntington Beach, United States
strong
+23.2% − Tacoma, United States
confused
+20.3% − LA HABANA, Cuba
strong
+18.2% − Hachinohe, Japan
strong
+21.2% − Guarapuava, Brazil
strong
+18.9% − Arad, Romania
strong
+11.8% − Warren, United States
strong
+22.1% − Unnao, India
weak
+18.8% − Abeokuta, Nigeria
happy
+19.5% − Sedgemoor, United Kingdom
strong
+19.3% − Fukuoka, Japan
weak
+13.4% − TIRANA, Albania
sad
+18.7% − Jhang, Pakistan
strong
+23.9% − Waverley, United Kingdom
weak
+24.4% − Monywa, Myanmar
confused
+22.1% − Xichang, China
confused
+20.3% − The Wrekin, United Kingdom
happy
+23.6% − La Spezia, Italy
confused
+22.0% − Regensburg, Germany
strong
+16.0% − North York, Canada
strong
+20.2% − Paraná, Argentina
strong
+12.3% − PANAMA, Panama
strong
+3.1% − Jequié, Brazil
strong
+5.6% − Zonguldak, Turkey
strong
+22.9% − Tameside, United Kingdom
confused
+19.1% − Ubon Ratchathani, Thailand
confused
+23.5% − The Wrekin, United Kingdom
happy
+23.6% − Jhang, Pakistan
strong
+23.9% − Zonguldak, Turkey
strong
+22.9% − Diyarbakir, Turkey
strong
+22.7% − Pinar del Río, Cuba
confused
+18.6% − Amiens, France
confused
+22.5% − Medellín, Colombia
strong
+21.8% − Laval, Canada
strong
+10.7% − Várzea Grande, Brazil
strong
+21.5% − Phoenix, United States
strong
+11.7% − Vadakara, India
sad
+6.6% − Grodno, Belarus
sad
+19.8% − Chillán, Chile
strong
+21.7% − Ubon Ratchathani, Thailand
confused
+23.5% − Sikar, India
confused
+24.6% − Chungju, Korea, South
sad
+4.6% − Baranovichi, Belarus
strong
+18.5% − ST. GEORGES, Grenada
strong
+19.2% − Ulan-Ude, Russia
confused
+2.6% − Gaya, India
strong
+23.6% − Jamalpur, Bangladesh
confused
+17.7% − Daxian, China
sad
+23.8% − Ulsan, Korea, South
confused
+24.5% − Abeokuta, Nigeria
happy
+19.5% − Cardiff, United Kingdom
strong
+16.1% − Lisburn, United Kingdom
strong
+19.9% − Anyang, China
confused
+1.0% − Erbil, Iraq
strong
+20.1% − Tanga, Tanzania
confused
+20.3% − Fresno, United States
strong
+21.7% −
▼
Tampa, United States
confused
-19.1% − Sapucaia, Brazil
strong
-18.8% − Queimados, Brazil
strong
-20.4% − Jiamusi, China
strong
-18.6% − Chicago, United States
strong
-18.5% − Anand, India
strong
-3.1% − Sefton, United Kingdom
strong
-5.2% − Alexandria, United States
strong
-11.9% − Hampton, United States
strong
-12.1% − Nhatrang, Vietnam
happy
-22.9% − NOUMEA, New Caledonia
strong
-18.8% − Dourados, Brazil
strong
-1.2% − Jersey City, United States
strong
-23.2% − Bridgeport, United States
strong
-18.9% − Richmond, United States
confused
-21.8% − Ingolstadt, Germany
strong
-14.9% − Kotte, Sri Lanka
confused
-1.5% − Quezon City, Philippines
strong
-4.0% − San Pablo, Philippines
strong
-18.3% − South Cambridgeshire, United Kingdom
strong
-17.7% − Fukuyama, Japan
strong
-22.7% − Magdeburg, Germany
strong
-23.7% − MONROVIA, Liberia
happy
-23.4% − Halifax, Canada
strong
-19.1% − Peshawar, Pakistan
strong
-24.4% − Zaria, Nigeria
confused
-18.6% − Santiago de los Caballeros, Dominican Republic
confused
-18.9% − Aguascalientes, Mexico
strong
-17.6% − Darlington, United Kingdom
strong
-24.3% − Cochabamba, Bolivia
strong
-23.2% − Jinan, China
strong
-8.9% − Gujrat, Pakistan
strong
-22.0% − Palakkad, India
strong
-17.6% − Mojokerto, Indonesia
strong
-13.8% − Brescia, Italy
strong
-18.6% − Leipzig, Germany
strong
-21.8% − Valencia, Venezuela
confused
-8.0% − Sergiev Posad, Russia
happy
-17.8% − Chimbote, Peru
strong
-22.8% − Birmingham, United States
confused
-22.6% − Batangas, Philippines
strong
-22.8% − Durango, Mexico
strong
-25.0% − Tanjung Balai, Indonesia
weak
-4.9% − Adana, Turkey
confused
-23.4% − Gent, Belgium
strong
-4.2% − Serra, Brazil
strong
-5.4% − Teignbridge, United Kingdom
confused
-20.2% − Braila, Romania
strong
-17.5% − Kisumu, Kenya
confused
-19.7% − San Jose, United States
confused
-24.0% − Toluca, Mexico
confused
-22.6% − Rouen, France
strong
-6.3% − Yingcheng, China
happy
-22.9% − Amagasaki, Japan
happy
-24.2% − Richmond, United States
confused
-21.8% − Petrópolis, Brazil
strong
-18.6% − Crewe & Nantwich, United Kingdom
strong
-17.6% − Muntinlupa, Philippines
strong
-19.8% − LISBON, Portugal
strong
-7.5% − Floridablanca, Colombia
strong
-22.9% − Kochi, India
strong
-24.8% − Irving, United States
strong
-20.4% − Curitiba, Brazil
strong
-24.8% − Chiba, Japan
strong
-24.8% − Iseyin, Nigeria
happy
-22.8% − Manchester, United Kingdom
strong
-9.2% − Bareilly, India
confused
-23.5% − Geelong, Australia
confused
-2.1% − Luohe, China
happy
-22.9% − Kawachinagano, Japan
happy
-22.9% − Kitchener, Canada
strong
-15.2% − Sukabumi, Indonesia
happy
-9.2% −
=
Chongli, China
weak
− Bihar Sharif, India
happy
− Guangshui, China
happy
− Meizhou, China
strong
− Khouribga, Morocco
sad
− Dayuan, China
happy
− Kiselevsk, Russia
happy
− Korla, China
strong
− Pinxiang, China
happy
− Huaiyin, China
happy
− Guikong, China
happy
− Nandyal, India
happy
− Reggio di Calabria, Italy
happy
− Shuangyashan, China
happy
− Moji-Guaçu, Brazil
happy
− Soyapango, El Salvador
happy
− Kashihara, Japan
happy
− Taldikorgan, Kazakstan
happy
− Jinin, China
happy
− Kadhimain, Iraq
happy
− Syktivkar, Russia
happy
− Taian, China
confused
− Angren, Uzbekistan
confused
− Ferraz de Vasconcelos, Brazil
happy
− Kurume, Japan
guilty
− Evpatoriya, Ukraine
happy
− San Fernando de Apure, Venezuela
strong
− Alagoinhas, Brazil
strong
− Al-Rakka, Syrian Arab Republic
happy
− Mudangiang, China
happy
− Holon, Israel
confused
− Shanwei, China
confused
− Taiyan, China
happy
− Changweon, Korea, South
happy
− Jastrzebie - Zdrój, Poland
confused
− Rubtsovsk, Russia
happy
− Juazeiro do Norte, Brazil
happy
− Salamanca, Mexico
strong
− Yuncheng, China
weak
− Pórto Velho, Brazil
happy
− Artux, China
happy
− Xuchang, China
happy
− Xiaocan, China
happy
− Dlepmealow, South Africa
happy
− Sidi-bel-Abbès, Algeria
happy
− Chinhae, Korea, South
happy
− Shaown, China
happy
− Sao José do Rio Prêto, Brazil
happy
− Calithèa, Greece
happy
− Sirjan, Iran
happy
− Lipetsk, Russia
strong
− Nasariya, Iraq
happy
− Basingstoke & Deane, United Kingdom
happy
− Kanhangad, India
happy
− Novocherkassk, Russia
happy
− Debrezit, Ethiopia
happy
− Deir El-Zor, Syrian Arab Republic
happy
− Colimas, Mexico
happy
− Durg, India
weak
− Niiza, Japan
happy
− Sao Joao de Meriti, Brazil
happy
− Sialkote, Pakistan
happy
−
Reset - Show All Layers
Select a group to display an individual emotion layer:
happy
excited
overjoyed
thrilled
exuberant
ecstatic
weak
helpless
hopeless
beat
overwhelmed
impotent
confused
bewildered
trapped
troubled
desperate
lost
afraid
terrified
horrified
scared stiff
petrified
fearful
guilty
sorrowful
remorseful
ashamed
unworthy
worthless
sad
depressed
disappointed
alone
hurt
left out
strong
powerful
aggressive
gung ho
potent
super
angry
furious
enraged
outraged
aggravated
irate