Map
Videos
About
Under the hood
Contact
WORLD EMOTION GLOBAL TREND
WEAK
+0.5%
Tomorrow:
ANGRY
+2.9%
09/Nov/2016:
HAPPY
+1.7%
Last Data-set:
07/Nov/2016
05:13 UTC
▲
Sikar, India
confused
+24.6% − Tacoma, United States
confused
+20.3% − Waitakere, New Zealand
confused
+23.5% − Amiens, France
confused
+22.5% − Mönchengladbach, Germany
happy
+14.7% − Regensburg, Germany
strong
+16.0% − Phoenix, United States
strong
+11.7% − Jhang, Pakistan
strong
+23.9% − Huntington Beach, United States
strong
+23.2% − Lapu-Lapu, Philippines
strong
+24.6% − Arad, Romania
strong
+11.8% − Cardiff, United Kingdom
strong
+16.1% − Tangshan, China
weak
+22.3% − East Hampshire, United Kingdom
confused
+19.0% − Chungju, Korea, South
sad
+4.6% − Mbeya, Tanzania
confused
+22.8% − Ambala, India
happy
+21.8% − TIRANA, Albania
sad
+18.7% − Thai Nguyen, Vietnam
sad
+18.1% − BASSE-TERRE, Guadeloupe
strong
+24.8% − La Spezia, Italy
confused
+22.0% − Chillán, Chile
strong
+21.7% − LA HABANA, Cuba
strong
+18.2% − Silay, Philippines
happy
+19.9% − The Wrekin, United Kingdom
happy
+23.6% − Daxian, China
sad
+23.8% − Jequié, Brazil
strong
+5.6% − Susano, Brazil
strong
+1.7% − Gurgaon, India
strong
+14.2% − Dunfermline, United Kingdom
confused
+6.9% − Hamilton, Canada
confused
+21.0% − Várzea Grande, Brazil
strong
+21.5% − Maiduguri, Nigeria
confused
+21.6% − Raniganj, India
confused
+23.2% − Nizhnekamsk, Russia
confused
+21.0% − Baranovichi, Belarus
strong
+18.5% − Giza, Egypt
confused
+23.8% − Zonguldak, Turkey
strong
+22.9% − Tameside, United Kingdom
confused
+19.1% − Burgos, Spain
strong
+19.8% − Kure, Japan
happy
+17.9% − Fukuoka, Japan
weak
+13.4% − Shaoyang, China
weak
+21.8% − Xichang, China
confused
+20.3% − Guarapuava, Brazil
strong
+18.9% − The Wrekin, United Kingdom
happy
+23.6% − Botou, China
strong
+24.2% − Surakarta, Indonesia
strong
+20.9% − Warren, United States
strong
+22.1% − Hachinohe, Japan
strong
+21.2% − Jamalpur, Bangladesh
confused
+17.7% − Remscheid, Germany
strong
+19.6% − Chon Buri, Thailand
strong
+23.4% − Pocos de Caldas, Brazil
strong
+24.0% − Piracicaba, Brazil
strong
+20.7% − Zonguldak, Turkey
strong
+22.9% − Erbil, Iraq
strong
+20.1% − Fresno, United States
strong
+21.7% − Ndola, Zambia
happy
+17.9% − Ubon Ratchathani, Thailand
confused
+23.5% − Jhang, Pakistan
strong
+23.9% − Gurgaon, India
strong
+14.2% − Kharagpur, India
strong
+17.6% − Ubon Ratchathani, Thailand
confused
+23.5% − Gaya, India
strong
+23.6% − Anjo, Japan
strong
+2.2% − Abeokuta, Nigeria
happy
+19.5% − Eastleigh, United Kingdom
happy
+19.0% − Ulsan, Korea, South
confused
+24.5% − Vallejo, United States
confused
+21.9% − Tyumen, Russia
strong
+7.1% − Monywa, Myanmar
confused
+22.1% − Remscheid, Germany
strong
+19.6% − Botou, China
strong
+24.2% − Guilin, China
strong
+3.0% − Tegal, Indonesia
confused
+4.6% − Cangzhou, China
confused
+17.7% − Erlangen, Germany
confused
+22.9% − Caruaru, Brazil
strong
+18.6% − ROAD TOWN, British Virgin Islands
confused
+22.0% − PANAMA, Panama
strong
+3.1% − Oberhausen, Germany
weak
+19.1% − Grodno, Belarus
sad
+19.8% − Tacoma, United States
confused
+20.3% − Tarragona, Spain
strong
+21.8% − Diyarbakir, Turkey
strong
+22.7% − North York, Canada
strong
+20.2% − Boksburg, South Africa
confused
+18.1% − Pinar del Río, Cuba
confused
+18.6% − Yokkaichi, Japan
strong
+19.6% − BRIDGETOWN, Barbados
confused
+23.8% − Ichikawa, Japan
strong
+4.5% − Rangpur, Bangladesh
happy
+24.3% − Kofu, Japan
confused
+20.9% − Paraná, Argentina
strong
+12.3% − ST. GEORGES, Grenada
strong
+19.2% − Pinar del Río, Cuba
confused
+18.6% − Mulhouse, France
happy
+21.4% − Malabon, Philippines
happy
+23.0% − Chungju, Korea, South
sad
+4.6% − Bobo Dioulasso, Burkina Faso
angry
+20.4% −
▼
Manchester, United Kingdom
strong
-9.2% − Jinan, China
strong
-8.9% − Cochabamba, Bolivia
strong
-23.2% − Gent, Belgium
strong
-4.2% − Yingcheng, China
happy
-22.9% − Teignbridge, United Kingdom
confused
-20.2% − Adana, Turkey
confused
-23.4% − San Pablo, Philippines
strong
-18.3% − Palakkad, India
strong
-17.6% − Chiba, Japan
strong
-24.8% − Sefton, United Kingdom
strong
-5.2% − Valencia, Venezuela
confused
-8.0% − Halifax, Canada
strong
-19.1% − Chicago, United States
strong
-18.5% − Petrópolis, Brazil
strong
-18.6% − Magdeburg, Germany
strong
-23.7% − Amagasaki, Japan
happy
-24.2% − Brescia, Italy
strong
-18.6% − Alexandria, United States
strong
-11.9% − Tanjung Balai, Indonesia
weak
-4.9% − Luohe, China
happy
-22.9% − LISBON, Portugal
strong
-7.5% − Kawachinagano, Japan
happy
-22.9% − Durango, Mexico
strong
-25.0% − Serra, Brazil
strong
-5.4% − Ingolstadt, Germany
strong
-14.9% − Geelong, Australia
confused
-2.1% − Fukuyama, Japan
strong
-22.7% − Birmingham, United States
confused
-22.6% − Kitchener, Canada
strong
-15.2% − Kisumu, Kenya
confused
-19.7% − Bridgeport, United States
strong
-18.9% − South Cambridgeshire, United Kingdom
strong
-17.7% − Curitiba, Brazil
strong
-24.8% − Muntinlupa, Philippines
strong
-19.8% − Floridablanca, Colombia
strong
-22.9% − Jiamusi, China
strong
-18.6% − Leipzig, Germany
strong
-21.8% − Sukabumi, Indonesia
happy
-9.2% − Toluca, Mexico
confused
-22.6% − Richmond, United States
confused
-21.8% − Richmond, United States
confused
-21.8% − Queimados, Brazil
strong
-20.4% − Dourados, Brazil
strong
-1.2% − Darlington, United Kingdom
strong
-24.3% − Rouen, France
strong
-6.3% − Irving, United States
strong
-20.4% − Hampton, United States
strong
-12.1% − Crewe & Nantwich, United Kingdom
strong
-17.6% − Mojokerto, Indonesia
strong
-13.8% − Jersey City, United States
strong
-23.2% − Sergiev Posad, Russia
happy
-17.8% − Kochi, India
strong
-24.8% − Braila, Romania
strong
-17.5% − Chimbote, Peru
strong
-22.8% − Sapucaia, Brazil
strong
-18.8% − Aguascalientes, Mexico
strong
-17.6% − Kotte, Sri Lanka
confused
-1.5% − Iseyin, Nigeria
happy
-22.8% − San Jose, United States
confused
-24.0% − Gujrat, Pakistan
strong
-22.0% − Batangas, Philippines
strong
-22.8% − Bareilly, India
confused
-23.5% − Zaria, Nigeria
confused
-18.6% − NOUMEA, New Caledonia
strong
-18.8% − Nhatrang, Vietnam
happy
-22.9% − Peshawar, Pakistan
strong
-24.4% − Quezon City, Philippines
strong
-4.0% − MONROVIA, Liberia
happy
-23.4% − Tampa, United States
confused
-19.1% − Santiago de los Caballeros, Dominican Republic
confused
-18.9% − Anand, India
strong
-3.1% −
=
Ferraz de Vasconcelos, Brazil
happy
− Sao José do Rio Prêto, Brazil
happy
− Chongli, China
weak
− Kadhimain, Iraq
happy
− Sialkote, Pakistan
happy
− Evpatoriya, Ukraine
happy
− Angren, Uzbekistan
confused
− San Fernando de Apure, Venezuela
strong
− Pinxiang, China
happy
− Deir El-Zor, Syrian Arab Republic
happy
− Holon, Israel
confused
− Kiselevsk, Russia
happy
− Alagoinhas, Brazil
strong
− Changweon, Korea, South
happy
− Shanwei, China
confused
− Guikong, China
happy
− Taldikorgan, Kazakstan
happy
− Durg, India
weak
− Calithèa, Greece
happy
− Taiyan, China
happy
− Dayuan, China
happy
− Meizhou, China
strong
− Artux, China
happy
− Colimas, Mexico
happy
− Bihar Sharif, India
happy
− Chinhae, Korea, South
happy
− Debrezit, Ethiopia
happy
− Xuchang, China
happy
− Novocherkassk, Russia
happy
− Sao Joao de Meriti, Brazil
happy
− Yuncheng, China
weak
− Jastrzebie - Zdrój, Poland
confused
− Al-Rakka, Syrian Arab Republic
happy
− Kurume, Japan
guilty
− Juazeiro do Norte, Brazil
happy
− Sidi-bel-Abbès, Algeria
happy
− Sirjan, Iran
happy
− Syktivkar, Russia
happy
− Shuangyashan, China
happy
− Soyapango, El Salvador
happy
− Korla, China
strong
− Nandyal, India
happy
− Guangshui, China
happy
− Xiaocan, China
happy
− Basingstoke & Deane, United Kingdom
happy
− Salamanca, Mexico
strong
− Mudangiang, China
happy
− Reggio di Calabria, Italy
happy
− Dlepmealow, South Africa
happy
− Jinin, China
happy
− Khouribga, Morocco
sad
− Pórto Velho, Brazil
happy
− Kanhangad, India
happy
− Rubtsovsk, Russia
happy
− Kashihara, Japan
happy
− Huaiyin, China
happy
− Lipetsk, Russia
strong
− Nasariya, Iraq
happy
− Niiza, Japan
happy
− Taian, China
confused
− Shaown, China
happy
− Moji-Guaçu, Brazil
happy
−
Reset - Show All Layers
Select a group to display an individual emotion layer:
happy
excited
overjoyed
thrilled
exuberant
ecstatic
weak
helpless
hopeless
beat
overwhelmed
impotent
confused
bewildered
trapped
troubled
desperate
lost
afraid
terrified
horrified
scared stiff
petrified
fearful
guilty
sorrowful
remorseful
ashamed
unworthy
worthless
sad
depressed
disappointed
alone
hurt
left out
strong
powerful
aggressive
gung ho
potent
super
angry
furious
enraged
outraged
aggravated
irate