Map
Videos
About
Under the hood
Contact
WORLD EMOTION GLOBAL TREND
WEAK
+0.5%
Tomorrow:
ANGRY
+2.9%
09/Nov/2016:
HAPPY
+1.7%
Last Data-set:
07/Nov/2016
05:13 UTC
▲
The Wrekin, United Kingdom
happy
+23.6% − Remscheid, Germany
strong
+19.6% − Kure, Japan
happy
+17.9% − Jequié, Brazil
strong
+5.6% − Jhang, Pakistan
strong
+23.9% − Jhang, Pakistan
strong
+23.9% − Vallejo, United States
confused
+21.9% − Surakarta, Indonesia
strong
+20.9% − Ambala, India
happy
+21.8% − Oberhausen, Germany
weak
+19.1% − Engels, Russia
strong
+21.7% − Abeokuta, Nigeria
happy
+19.5% − Sedgemoor, United Kingdom
strong
+19.3% − Tegal, Indonesia
confused
+4.6% − Yavatmal, India
guilty
+24.6% − Guilin, China
strong
+3.0% − Amiens, France
confused
+22.5% − Ulsan, Korea, South
confused
+24.5% − East Hampshire, United Kingdom
confused
+19.0% − Tangshan, China
weak
+22.3% − Susano, Brazil
strong
+1.7% − Bobo Dioulasso, Burkina Faso
angry
+20.4% − Fukuoka, Japan
weak
+13.4% − Raniganj, India
confused
+23.2% − Yao, Japan
strong
+22.0% − Ndola, Zambia
happy
+17.9% − Zonguldak, Turkey
strong
+22.9% − Erlangen, Germany
confused
+22.9% − Xichang, China
confused
+20.3% − Várzea Grande, Brazil
strong
+21.5% − Monywa, Myanmar
confused
+22.1% − Mbeya, Tanzania
confused
+22.8% − Pinar del Río, Cuba
confused
+18.6% − Huntington Beach, United States
strong
+23.2% − Silay, Philippines
happy
+19.9% − Thai Nguyen, Vietnam
sad
+18.1% − Tameside, United Kingdom
confused
+19.1% − Chon Buri, Thailand
strong
+23.4% − Gurgaon, India
strong
+14.2% − Tacoma, United States
confused
+20.3% − Chillán, Chile
strong
+21.7% − Loudi, China
weak
+17.8% − Unnao, India
weak
+18.8% − Vadakara, India
sad
+6.6% − Dunfermline, United Kingdom
confused
+6.9% − North York, Canada
strong
+20.2% − Waitakere, New Zealand
confused
+23.5% − Hachinohe, Japan
strong
+21.2% − Cardiff, United Kingdom
strong
+16.1% − The Wrekin, United Kingdom
happy
+23.6% − Jamalpur, Bangladesh
confused
+17.7% − Mönchengladbach, Germany
happy
+14.7% − Pegu, Myanmar
confused
+24.1% − Vallejo, United States
confused
+21.9% − Piracicaba, Brazil
strong
+20.7% − PANAMA, Panama
strong
+3.1% − Sikar, India
confused
+24.6% − Fresno, United States
strong
+21.7% − Ubon Ratchathani, Thailand
confused
+23.5% − Shaoyang, China
weak
+21.8% − Arad, Romania
strong
+11.8% − TIRANA, Albania
sad
+18.7% − Gurgaon, India
strong
+14.2% − San Cristóbal, Venezuela
weak
+18.5% − Lapu-Lapu, Philippines
strong
+24.6% − Zonguldak, Turkey
strong
+22.9% − Diyarbakir, Turkey
strong
+22.7% − Daxian, China
sad
+23.8% − BASSE-TERRE, Guadeloupe
strong
+24.8% − Baranovichi, Belarus
strong
+18.5% − Pocos de Caldas, Brazil
strong
+24.0% − Oberhausen, Germany
weak
+19.1% − Pinar del Río, Cuba
confused
+18.6% − Abeokuta, Nigeria
happy
+19.5% − Caruaru, Brazil
strong
+18.6% − Mulhouse, France
happy
+21.4% − Paraná, Argentina
strong
+12.3% − Kofu, Japan
confused
+20.9% − Boksburg, South Africa
confused
+18.1% − Springfield, United States
confused
+5.1% − Rangpur, Bangladesh
happy
+24.3% − Yokkaichi, Japan
strong
+19.6% − ST. GEORGES, Grenada
strong
+19.2% − La Spezia, Italy
confused
+22.0% − Medellín, Colombia
strong
+21.8% − Waverley, United Kingdom
weak
+24.4% − Kharagpur, India
strong
+17.6% − Guarapuava, Brazil
strong
+18.9% − Beaumont, United States
confused
+12.1% − Regensburg, Germany
strong
+16.0% − LA HABANA, Cuba
strong
+18.2% − Chungju, Korea, South
sad
+4.6% − Anjo, Japan
strong
+2.2% − San Sebastián, Spain
confused
+24.0% − Lisburn, United Kingdom
strong
+19.9% − Malabon, Philippines
happy
+23.0% − Botou, China
strong
+24.2% − Laval, Canada
strong
+10.7% − Eastleigh, United Kingdom
happy
+19.0% − Ubon Ratchathani, Thailand
confused
+23.5% − Cangzhou, China
confused
+17.7% −
▼
Chiba, Japan
strong
-24.8% − Serra, Brazil
strong
-5.4% − NOUMEA, New Caledonia
strong
-18.8% − Iseyin, Nigeria
happy
-22.8% − Muntinlupa, Philippines
strong
-19.8% − Luohe, China
happy
-22.9% − Jiamusi, China
strong
-18.6% − Braila, Romania
strong
-17.5% − Palakkad, India
strong
-17.6% − Sukabumi, Indonesia
happy
-9.2% − Leipzig, Germany
strong
-21.8% − Manchester, United Kingdom
strong
-9.2% − Petrópolis, Brazil
strong
-18.6% − Irving, United States
strong
-20.4% − Zaria, Nigeria
confused
-18.6% − Cochabamba, Bolivia
strong
-23.2% − Gent, Belgium
strong
-4.2% − San Pablo, Philippines
strong
-18.3% − Jersey City, United States
strong
-23.2% − Rouen, France
strong
-6.3% − Toluca, Mexico
confused
-22.6% − Kitchener, Canada
strong
-15.2% − Richmond, United States
confused
-21.8% − South Cambridgeshire, United Kingdom
strong
-17.7% − Peshawar, Pakistan
strong
-24.4% − Kochi, India
strong
-24.8% − Richmond, United States
confused
-21.8% − Hampton, United States
strong
-12.1% − Batangas, Philippines
strong
-22.8% − Valencia, Venezuela
confused
-8.0% − Alexandria, United States
strong
-11.9% − Brescia, Italy
strong
-18.6% − LISBON, Portugal
strong
-7.5% − Birmingham, United States
confused
-22.6% − Aguascalientes, Mexico
strong
-17.6% − Jinan, China
strong
-8.9% − Adana, Turkey
confused
-23.4% − Darlington, United Kingdom
strong
-24.3% − Mojokerto, Indonesia
strong
-13.8% − Sefton, United Kingdom
strong
-5.2% − Bareilly, India
confused
-23.5% − Teignbridge, United Kingdom
confused
-20.2% − Fukuyama, Japan
strong
-22.7% − MONROVIA, Liberia
happy
-23.4% − Santiago de los Caballeros, Dominican Republic
confused
-18.9% − Magdeburg, Germany
strong
-23.7% − Quezon City, Philippines
strong
-4.0% − Geelong, Australia
confused
-2.1% − Yingcheng, China
happy
-22.9% − Curitiba, Brazil
strong
-24.8% − Sergiev Posad, Russia
happy
-17.8% − Chimbote, Peru
strong
-22.8% − Anand, India
strong
-3.1% − Halifax, Canada
strong
-19.1% − Dourados, Brazil
strong
-1.2% − Crewe & Nantwich, United Kingdom
strong
-17.6% − Sapucaia, Brazil
strong
-18.8% − Durango, Mexico
strong
-25.0% − Gujrat, Pakistan
strong
-22.0% − Amagasaki, Japan
happy
-24.2% − Kisumu, Kenya
confused
-19.7% − Ingolstadt, Germany
strong
-14.9% − Kotte, Sri Lanka
confused
-1.5% − Kawachinagano, Japan
happy
-22.9% − Bridgeport, United States
strong
-18.9% − San Jose, United States
confused
-24.0% − Nhatrang, Vietnam
happy
-22.9% − Tanjung Balai, Indonesia
weak
-4.9% − Queimados, Brazil
strong
-20.4% − Tampa, United States
confused
-19.1% − Floridablanca, Colombia
strong
-22.9% − Chicago, United States
strong
-18.5% −
=
Rubtsovsk, Russia
happy
− Kiselevsk, Russia
happy
− Pórto Velho, Brazil
happy
− Dayuan, China
happy
− Dlepmealow, South Africa
happy
− Lipetsk, Russia
strong
− Xuchang, China
happy
− Holon, Israel
confused
− Changweon, Korea, South
happy
− Moji-Guaçu, Brazil
happy
− Guangshui, China
happy
− Shuangyashan, China
happy
− Kanhangad, India
happy
− Juazeiro do Norte, Brazil
happy
− Evpatoriya, Ukraine
happy
− Taian, China
confused
− Xiaocan, China
happy
− Salamanca, Mexico
strong
− Reggio di Calabria, Italy
happy
− Pinxiang, China
happy
− Sao Joao de Meriti, Brazil
happy
− San Fernando de Apure, Venezuela
strong
− Soyapango, El Salvador
happy
− Nandyal, India
happy
− Shanwei, China
confused
− Guikong, China
happy
− Novocherkassk, Russia
happy
− Mudangiang, China
happy
− Alagoinhas, Brazil
strong
− Kashihara, Japan
happy
− Sialkote, Pakistan
happy
− Jastrzebie - Zdrój, Poland
confused
− Sao José do Rio Prêto, Brazil
happy
− Meizhou, China
strong
− Nasariya, Iraq
happy
− Taldikorgan, Kazakstan
happy
− Bihar Sharif, India
happy
− Shaown, China
happy
− Kurume, Japan
guilty
− Sidi-bel-Abbès, Algeria
happy
− Korla, China
strong
− Huaiyin, China
happy
− Ferraz de Vasconcelos, Brazil
happy
− Basingstoke & Deane, United Kingdom
happy
− Deir El-Zor, Syrian Arab Republic
happy
− Colimas, Mexico
happy
− Durg, India
weak
− Al-Rakka, Syrian Arab Republic
happy
− Chinhae, Korea, South
happy
− Syktivkar, Russia
happy
− Angren, Uzbekistan
confused
− Niiza, Japan
happy
− Calithèa, Greece
happy
− Sirjan, Iran
happy
− Taiyan, China
happy
− Artux, China
happy
− Khouribga, Morocco
sad
− Debrezit, Ethiopia
happy
− Chongli, China
weak
− Jinin, China
happy
− Kadhimain, Iraq
happy
− Yuncheng, China
weak
−
Reset - Show All Layers
Select a group to display an individual emotion layer:
happy
excited
overjoyed
thrilled
exuberant
ecstatic
weak
helpless
hopeless
beat
overwhelmed
impotent
confused
bewildered
trapped
troubled
desperate
lost
afraid
terrified
horrified
scared stiff
petrified
fearful
guilty
sorrowful
remorseful
ashamed
unworthy
worthless
sad
depressed
disappointed
alone
hurt
left out
strong
powerful
aggressive
gung ho
potent
super
angry
furious
enraged
outraged
aggravated
irate